Climate Change Implications for Lake Environments

11th Annual lake Links October 20, 2012 Paul Lehman

Overview

- History and description the Mississippi River watershed
- Local impact risk assessment
- Reservoir implications
- Water management implications
- Adaptation options

Mississippi River Watershed

Mississippi River Watershed

Climate Change and Vulnerability
What can we expect?
How vulnerable will we be?
How can we adapt?

Mean Annual Flow Mississippi River @ Appleton (02KF006)

Average Winter Stream Flow Mississippi River @ Appleton (02KF006)

Maximum Summer Flow

Mississippi River @ Appleton (02KF006)

Minimum Summer 7-day Mean

Mississippi River @ Appleton (02KF006)

Risk Assessment

Preliminary analysis phase

- Problem definition/scoping
- Quantify projected changes in precipitation and temperature
- Model hydrologic response
- Assess reservoir performance and capacity to satisfying constraints and objectives
- Assess secondary impacts (fisheries/water quality)

Methodology

- A2 emissions scenario CGCM II climate model downscaled to Mississippi R. watershed
 - Temperature
 - Precipitation
- Four periods modeled
 - Base Period 1974 2002
 - Future periods (2010 2039, 2040 2069, 2070 2099)
- Mike 11 NAM calibrated rainfall/runoff model
- MRWM reservoir operation model

RESULTS Minimum and Maximum Temperature - Base and Future Projections

Mean Precipitation - Base and Future Projections

Mean Precipitation for base and future periods

Streamflow Comparison Mississippi River @ Appleton (o2KF006)

Streamflow Comparison Mississippi River @ Appleton (o2KF006)

Streamflow Comparison Mississippi River @ Appleton (02KF006)

Reservoir Implications

Mean/80th/20th Percentile Flows - 1974-2002 Clyde River @ Gordons Rapids (WSC02KF016) 30 25 20 -Mean Flow(cms) -80.0% 20.0% 15 10 5 0 Feb Sep Oct Jan Mar Apr May Jun Jul Aug Nov Dec Date Mean/80th/20th Percentile Flows - 2070-2099 Clyde River @ Gordons Rapids (WSC02KF016) 30 25 20 Mean Flow(cms) 80.0% 20.0% 15 10 5 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Date

Implications

- Highly variable flows over fall/winter
- Potential risks:
 - achieving summer recreation targets
 - water supply targets
 - shoreline damage
 - unsafe ice conditions

Water Management Implications (Primary)

Stream Flows

Freshets 28% lower/6-7 weeks earlier

- Minimum summer flows
 - 44% lower
 - Persist 28% longer
- Fall/winter flows 70% higher
- Greater flood risk in fall and winter
- Increased shoreline erosion
- Increased frazil ice generation
- Greater variability in summer water levels

Water Management Implications (Secondary)

Higher evapo-transporation rates

- 10% increase in precipitation
- 16% increase in evapo-transpiration
- 26% reduction in annual streamflow
- Greater water demands

Higher surface water temperatures

Lower flushing rates/degraded water quality

Waste water discharge criteria

Adaptation Options

Maintain/increase reservoir capacity

- Mississippi River (25%)
- Employ risk based management strategies
- Minimize nutrient loading
- Improve capacity for watershed monitoring and assessment
 - Flood warning
 - Low water response
 - Reservoir response

Adapt shoreline structures

Floating docks

Thank you

Mississippi Valley Conservation
 http://www.mvc.on.ca/
 plehman@mvc.on.ca